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Abstract
We consider a complex system composed of many non-identical parts where
(i) the dynamics of each part are Ornstein–Uhlenbeck; (ii) all parts are driven
by a common external Lévy noise; and (iii) the system’s collective output is
the averaged aggregate of the outputs of its parts. Whereas the dynamics on
the ‘microscopic’ parts-level are Markov, the dynamics on the ‘macroscopic’
system-level are not Markov—and may display a long memory. Moreover,
the universal temporal scaling limit of the system’s output, in the presence
of long memory, is fractional Brownian motion. The model presented is
analytically tractable, and gives closed-form quantitative characterizations of
both the Markov-breaking phenomenon and the emergence of long memory.

PACS numbers: 05.40.Fb, 05.40.Ca, 05.40.Jc

1. Introduction

In this communication we show how fractional Brownian motion (FBM) arises naturally from
complex systems whose parts are governed by Ornstein–Uhlenbeck (OU) dynamics driven
by a common external Lévy noise, and whose output is the averaged aggregate of their parts’
outputs.

OU dynamics are the simplest conceivable stochastic dynamics in continuous time, and
are both elemental and ubiquitous in the physical and engineering sciences [1, 2]. FBM,
on the other hand, is a highly complex random motion, and its intrinsic structure is highly
non-intuitive and intricate [3, 4].

In physics, FBM was shown to emerge from Hamiltonian dynamics leading to generalized
Langevin equations: (i) heat baths with random–matrix interactions [5]; (ii) Kac–Zwanzig
heat baths with random initial conditions [6]. In mathematics, abstract limit theorems leading
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to FBM were devised (see [4, 7] and references therein), and independent superpositions of
simple random processes were proved to converge to FBM: (i) renewal processes [8, 9]; (ii)
on–off processes [10]; (iii) persistent random walks [11]; (iv) OU processes [12].

As observed by Hurst [13], the Nile basin is a complex hydrological system producing
FBM. The Nile basin is composed of many different geological parts. All parts are ‘fed’ by
rainfall, each part produces its output flow, and the parts’ output flows are aggregated-up into
the Nile flow. The Nile basin gives rise to the following conceptual model: the rainfall events
are a common external Poissonian noise affecting all parts, and the parts’ output flows are
(non-identical) shot noise processes driven by the common ‘rainfall noise’3.

Since shot noise is a special case of Lévy-driven OU dynamics [14–16], we arrive
at the Composite Ornstein–Uhlenbeck (COU) system-model presented and studied in this
communication: a system whose output is the averaged aggregate of the outputs of its many
different system parts—each part governed by its own OU dynamics, and all dynamics driven
by a common external Lévy noise.

The COU system-model establishes a path leading from the elemental OU dynamics to
the complex FBM. The path will take us through moving-average processes, the phenomena
of Markov-breaking and the emergence of long memory.

2. Ornstein–Uhlenbeck dynamics

OU dynamics [1] are governed by the linear stochastic differential equation

ξ̇ (t) = −xξ(t) + yṄ(t) (1)

where (i) the ‘input’ Ṅ = (Ṅ(t))t is a driving noise process; (ii) the ‘output’ ξ = (ξ(t))t is
the OU process propagated by the OU dynamics; (iii) the ‘amplitudes’ x and y are arbitrary
positive parameters. The general solution of the OU equation (1), over the entire real line
−∞ < t < ∞, is given by

ξ(t) =
∫ t

−∞
(y exp{−x · (t − t ′)})Ṅ(t ′) dt ′. (2)

Equation (2) represents a linear integral transformation mapping the input noise process Ṅ to
the output OU process ξ .

The OU equation (1) is a Langevin equation with a linear restoring force. It describes
a system undergoing an exponential relaxation while, simultaneously, being perturbed by
an external noise. The exponential relaxation and the perturbing noise are antithetical—the
former pushing the system toward equilibrium, while the latter driving the system away from
equilibrium. The parameter x represents the amplitude of the exponential relaxation, whereas
the parameter y represents the amplitude of the perturbing noise.

In case the driving noise is white—the temporal derivative of Brownian motion—the OU
equation (1) describes diffusion in the presence of a harmonic potential well [1, 2] . In case
the driving noise is Poissonian—the temporal derivative of a compound Poisson process—the
OU equation (1) describes shot noise (see [15, 16] for a modern review).

Both white and Poissonian noises are special cases of Lévy noises—the temporal
derivatives of Lévy processes (namely, processes with stationary and independent increments
[17, 18]). OU and Langevin dynamics driven by general Lévy noises attracted major interest
in recent years, and were studied via different perspectives and approaches [14, 19–28].

3 The Nile example was chosen due to the connection to Hurst. Since the Nile basin is vast, it is not realistic to
assume the rainfall over its different parts to be modeled by one common external process. A more realistic example
is that of a river basin ‘fed’ by common rainfall events, and composed of many water catchments assuming the role
of its different parts.
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3. Composite Ornstein–Uhlenbeck systems

The COU system-model is constructed as follows. Consider a system composed of n non-
identical parts labeled k = 1, . . . , n. Each part is governed by its own OU dynamics, and all
parts are driven by a common noise Ṅ :

ξ̇k(t) = −Xkξk(t) + YkṄ(t), (3)

where ξk = (ξk(t))t and (Xk, Yk) are, respectively, the OU output process and the ‘amplitude-
pair’ of part k. The system’s output process �n = (�n(t))t is the averaged aggregate of the
output processes of its parts:

�n(t) = 1

n

n∑
k=1

ξk(t). (4)

We emphasize that in the COU system-model the output processes of the system-parts
are coupled via the common driving noise Ṅ . Superpositions of independent OU processes—
where each OU process is driven by its own noise process, and the driving noises are
independent—were explored in [12] and in [29, 30] (see also references therein).

The COU system may be considered as a conceptual hydrological model of river flows.
The external noise Ṅ represents the rainfall over the river basin—the rainfall events modeled
in the form of Poissonian ‘shots’. The river basin is composed of many different water
catchments. Each water catchment (k) produces its own output process (ξk) which is a shot
noise process driven by the ‘rainfall noise’ Ṅ . The outputs of all water catchments are
aggregated together into the river flow

(∑n
k=1 ξk

)
.

We focus on the case of large COU systems in which n � 1. In this case it is natural
to assume that the variability of the amplitude-pairs {(Xk, Yk)}nk=1 obeys some statistical
regularity. Specifically, we assume that the amplitude-pairs are (i) independent and identically
distributed copies of a random, non-negative valued, amplitude-pair (X, Y ); (ii) independent
of the driving noise Ṅ . We emphasize that—in accordance with the fluctuation–dissipation
theorem [31]—the amplitudes X and Y may certainly be dependent random variables. The
input noise Ṅ is considered Lévy.

Thus, the COU system-model has two sources of underlying randomness: ‘quenched’
and ‘annealed’. The quenched randomness is internal and static: it influences the system at its
formation epoch by ‘molding’, once and for all, the realizations of the parts’ amplitude-pairs
(Xk, Yk). The annealed randomness is external and dynamic: it influences the system after its
formation, perturbing it via the external driving noise Ṅ .

As the system-size grows to infinity (n → ∞), the system’s output process �n converges
stochastically to a limit process � = (�(t))t given by

�(t) =
∫ t

−∞
�(t − t ′)Ṅ(t ′) dt ′, (5)

where �(τ) = 〈Y exp{−τX}〉 (τ > 0) [32]. The process � is a temporal moving-average
(MA) of the driving noise Ṅ , and the temporal averaging is performed with respect to
the memory function �(τ)—which is the mean of the random variable Y exp{−τX}. The
stochastic convergence requires that the random ratio Y 2/X have a finite mean, and that the
driving Lévy noise have a finite variance.

(The stochastic convergence �n → � is in L2, and its proof is based on L2 techniques. The
convergence holds even in cases where the amplitude-pairs are dependent random variables—
provided that their correlations are not too ‘strong’ [32].)
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Equation (5) represents a linear integral transformation mapping the input noise process Ṅ

to the output MA process �, and is a generalization of equation (2)—replacing the exponential
memory function (of equation (2)) by the general memory function �(τ).

If the memory function �(τ) is exponential—a degenerate scenario taking place if and
only if the amplitude X is non-random—then differentiating both sides of equation (5) yields
back the OU stochastic differential equation (1). However, if the memory function �(τ) is not
exponential then differentiating repeatedly both sides of equation (5) yields an infinite cascade
of stochastic differential equations:

U̇m(t) = Um+1(t) + κmṄ(t) (6)

(m = 0, 1, 2, . . .), where U0(t) = �(t) and κm = (−1)m〈XmY 〉. Thus, shifting from
exponential to non-exponential memory functions in the MA dynamics of equation (5)
results in an ‘explosion of dimensionality’—the one-dimensional OU stochastic differential
equation (1) being replaced by the infinite-dimensional system of stochastic differential
equations (6).

4. Markov-breaking and long memory

In the case of OU dynamics a Lévy input noise Ṅ renders the OU output process ξ both
stationary and Markov. On the other hand, in the case of MA dynamics a Lévy input noise Ṅ

renders the MA output process � stationary, but does not render it Markov (albeit when the
memory function �(τ) is exponential).

Thus, transcending from the ‘microscopic’ parts-level OU dynamics to the ‘macroscopic’
system-level MA dynamics induces a Markov-breaking phenomenon: while the parts’ output
processes ξk are Markov, the system’s output process � is not. The Markov breaking
phenomenon, in turn, may further lead to the emergence of a long memory [33–35]—or,
as coined by Mandelbrot and Wallis, the emergence of a ‘Joseph effect’ [36].

A finite-variance stationary stochastic process is said to have a long memory [33–35] if
either of the following equivalent asymptotic conditions holds: (i) its auto-covariance function
R(t) admits the asymptotic form

R(t) ∼
|t |→∞

r(|t |)
|t |α , (7)

where the exponent α is in the range 0 < α < 1, and where the function r(τ ) (τ > 0) is
slowly varying at infinity; (ii) its power-spectrum function S(ω) admits the asymptotic form

S(ω) ∼
ω→0

s(|ω|)
|ω|β , (8)

where the exponent β is in the range 0 < β < 1, and where the function s(τ ) (τ > 0) is
slowly varying at the origin4.

(The equivalence of the conditions represented by equations (7) and (8) follows from
the Tauberian theorem 4.10.3 in [37]—which asserts that the exponents α and β satisfy the
connection α + β = 1, and provides explicit transformations between the slowly varying
functions r(τ ) and s(τ ).)

4 A real function ϕ(τ) (τ > 0) is said to be slowly varying at the limit point τ∗ if the limit limτ→τ∗ ϕ(cτ)/ϕ(τ) = 1
holds for all positive constants c ([37, 38], section XIII.5). A slowly varying function fluctuates slower than a
power-law (at the limit point τ∗). Examples include constant functions, logarithms, iterated logarithms and powers
of logarithms.
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Both the OU process ξ of equation (2) and the MA process � of equation (5) are of finite
variance if and only if the driving Lévy noise Ṅ is of finite variance. With no loss of generality,
we henceforth consider the Lévy noise Ṅ to be centered—i.e., to have zero mean and unit
variance. This implies that both processes ξ and � have zero mean, and have well-defined
auto-covariance functions.

The OU process ξ can never display a long memory, since its auto-covariance function
always admits an exponential decay. On the other hand, the MA process � can display a
long memory, depending on its memory function �(τ)—which, in turn, is contingent on the
distribution of the random amplitude-pair (X, Y ). Hence, the emergence of a long memory—in
the transcendence from the microscopic parts-level OU dynamics to the macroscopic system-
level MA dynamics—is determined solely by the system’s quenched randomness, and is
unaffected by the system’s annealed randomness.

Let ψX,Y (x, y) (x, y > 0) denote the probability density function of the random
amplitude-pair (X, Y ). Long memory of the MA process � turns out to be contingent on
the behavior of the base function 
(x) = ∫ ∞

0 yψX,Y (x, y) dy (x > 0) near the origin.
Specifically, the emergence of long memory is characterized as follows [32].

If the base function satisfies 
(x) ∼ ϕ(x)x1/2−H (as x → 0)—where the exponent H is
in the range 1/2 < H < 1, and the function ϕ(x) is slowly varying at the origin—then the
MA process � has a long memory: (i) equation (7) holds with exponent α = 2 − 2H and
slowly varying function r(τ ) ∼ ϕ(1/τ)2 (as τ → ∞); (ii) equation (8) holds with exponent
β = 2H − 1 and slowly varying function s(τ ) ∼ ϕ(τ)2 (as τ → 0).

5. Examples

Two antithetical scenarios of amplitude-pair distribution are independent amplitudes and
functionally-dependent amplitudes Y = f (X).

Let ψX(x) (x > 0) denote the probability density function of the random amplitude X.
In the ‘independent scenario’ the memory function admits the form �(τ) = 〈Y 〉〈exp{−τX}〉,
and the base function admits the form 
(x) = 〈Y 〉ψX(x). In the ‘functionally-dependent
scenario’ the memory function admits the form �(τ) = 〈f (X) exp{−τX}〉, and the base
function admits the form 
(x) = f (x)ψX(x).

A special case of the COU system-model—in which the amplitude X is Gamma(γ )-
distributed5, the amplitude Y is degenerate and deterministic (specifically, Y ≡ 1), and
the input noise Ṅ is white—was studied by Iglói and Terdik [29]. More generally, if the
‘independent scenario’ holds and the amplitude X is Gamma(γ )-distributed then the memory
function admits the Paretian form �(τ) = 〈Y 〉(1 + τ)−γ , and the base function satisfies

(x) ∼ xγ−1 (as x → 0). Long memory emerges when the exponent γ is in the range
1/2 < γ < 1, in which case H = 3/2 − γ .

If the ‘functionally-dependent scenario’ holds with power-law functional dependence
Y = Xδ , and the amplitude X is Gamma(γ )-distributed then (the exponents γ and δ need
satisfy γ + δ > 0): the memory function admits the Paretian form �(τ) = (γ +δ)

(γ )
(1 + τ)−(γ +δ),

and the base function satisfies 
(x) ∼ x(γ +δ)−1 (as x → 0). Long memory emerges when
the exponent γ + δ is in the range 1/2 < γ + δ < 1, in which case H = 3/2 − (γ + δ).
The special case δ = 0 corresponds to Y ≡ 1, and the special case δ = 1/2 corresponds
to the fluctuation–dissipation theorem [31]. In the latter ‘fluctuation–dissipation case’ a

5 Namely, the random variable X is governed by the probability density function ψX(x) = (γ )−1 exp{−x}xγ−1

(x > 0), where γ is an arbitrary positive parameter ([38], section II.2).
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long memory emerges when the exponent γ is in the range 0 < γ < 1/2, in which case
H = 1 − γ .

6. Fractional Brownian motion

We turn now to explore the temporal scaling of the MA process � in the presence of long
memory (1/2 < H < 1). Speeding up time by the positive factor a, while re-scaling the
process � by the positive factor b, yields the scaled MA process Va,b = (Va,b(t))t given by
Va,b(t) = b−1�(at).

As the scaling factors grow to infinity (a, b → ∞)—whilst satisfying the scaling relation
b ∼ √

a�(a)—the scaled MA process Va,b converges stochastically to a limit noise process
V = (V (t))t given formally by

V (t) =
∫ t

−∞
(t − t ′)H−3/2Ẇ (t ′) dt ′, (9)

where Ẇ = (Ẇ (t))t is a driving white noise [32]. Namely, the process V is a temporal
moving-average of white noise Ẇ , and the temporal averaging is performed with respect to
the power-law memory function τH−3/2 (τ > 0; 1/2 < H < 1).

The limit V is a noise process: it is the temporal derivative of FBM in the very same way
white noise is the temporal derivative of Brownian motion. Specifically, if we take the limiting
noise process V to be a random velocity, then the resulting motion M = (M(t))t�0—defined
by M(t) = ∫ t

0 V (t ′) dt ′—is FBM.
FBM—a generalization of Brownian motion first introduced by Mandelbrot and Van

Ness [3]—is the quintessential example of a random motion with continuous sample-path
trajectories and dependent increments. By definition [4], FBM is a zero-mean Gaussian
process governed (up to a multiplicative factor) by the auto-covariance function

〈M(t1)M(t2)〉 = 1
2 {|t1|2H + |t2|2H − |t1 − t2|2H }. (10)

The parameter H is the FBM’s Hurst exponent, and can assume values in the range
0 < H < 1—the case H = 1/2 corresponding to Brownian motion. FBM is a statistically
selfsimilar process [4]: for any positive constant c the re-scaled motion (c−H M(ct))t�0 is
equal, in law, to the ‘original’ motion (M(t))t�0.

The mean-square displacement of FBM is given by 〈M(t)2〉 = t2H —which is sub-
diffusive in the sub-range 0 < H < 1/2, diffusive when H = 1/2, and super-diffusive in the
sub-range 1/2 < H < 1 (which is our case).

The increments of FBM form a finite-variance stationary stochastic sequence. This
sequence is negatively correlated in the sub-range 0 < H < 1/2, uncorrelated when H = 1/2,
and positively correlated in the sub-range 1/2 < H < 1. Moreover, in our case—the sub-
range 1/2 < H < 1—the sequence of increments possesses a long memory: (i) equation
(7) holds with exponent α = 2 − 2H and slowly varying function r(τ ) ∼ 1 (as τ → ∞);
(ii) equation (8) holds with exponent β = 2H − 1 and slowly varying function s(τ ) ∼ 1 (as
τ → 0).

7. Conclusions

In this communication we presented a path—based on the COU system-model—leading from
OU dynamics to MA dynamics and thereafter to FBM. The path exploited two scaling limits:
structural and temporal.
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The structural scaling limit ‘zoomed out’ on the structure of COU systems—transcending
from the microscopic parts-level to the macroscopic system-level. The structural scaling limit
had two key effects: (i) the dynamics changed from OU to MA; (ii) the quenched randomness
‘solidified’ into the deterministic memory function �(τ) of the MA dynamics.

The temporal scaling limit ‘zoomed out’ on the MA dynamics time series and—in the
presence of long memory—yielded FBM. The temporal scaling limit turned out to be universal:
(i) the quenched randomness collapsed to a single one-dimensional parameter—the Hurst
exponent H governing the FBM’s process distribution; (ii) the annealed randomness—the
arbitrary centered Lévy statistics of the driving noise—became Gaussian.

The change of dynamics from OU to MA was accompanied by a Markov-breaking
phenomenon which, in turn, enabled the emergence of a long memory. The COU
system presented herein—constructed from simple and elementary OU ‘building blocks’—
is a tractable analytical model providing both a qualitative explanation and a quantitative
characterization of the Markov-breaking phenomenon and the emergence of long memory.

References

[1] Uhlenbeck G E and Ornstein L S 1930 Phys. Rev. 36 823
[2] Coffey W T, Kalmykov Yu P and Waldron J T 2004 The Langevin Equation 2nd edn (Singapore: World

Scientific)
[3] Mandelbrot B B and Van Ness J W 1968 SIAM Rev. 10 422
[4] Embrechts P and Maejima M 2002 Selfsimilar Processes (Princeton, NJ: Princeton University Press)
[5] Lutz E 2001 Phys. Rev. E 64 051106
[6] Kupferman R 2004 J. Stat. Phys. 114 291
[7] Whitt W 2002 An Introduction to Stochastic-process Limits and their Applications to Queues (New York:

Springer)
[8] Mandelbrot B B 1969 Int. Econ. Rev. 10 82
[9] Taqqu M S and Levy J 1986 Using renewal processes to generate long-range dependence and high variability

Dependence in Probability and Statistics ed E Eberlein and M S Taqqu (Boston, MA: Birkhauser) pp 73–89
[10] Taqqu M S, Willinger W and Sherman R 1997 Comput. Commun. Rev. 27 5
[11] Enriquez N 2004 Stochast. Proc. Appl. 109 203
[12] Leonenko N N and Taufer E 2005 Stochastics 77 477
[13] Hurst H E 1954 Proc. Inst. Civil Eng. 3 1
[14] Eliazar I and Klafter J 2005 J. Stat. Phys. 119 165
[15] Eliazar I and Klafter J 2005 Proc. Natl Acad. Sci. 102 13779
[16] Eliazar I and Klafter J 2006 Physica A 360 227
[17] Samrodintsky G and Taqqu M S 1994 Stable Non-Gaussian Random Processes (New York: Chapman and Hall)
[18] Janicki A and Weron A 1994 Simulation and Chaotic Behavior of Stable Stochastic Processes (New York:

Dekker)
[19] Fogedby H C 1994 Phys. Rev. E 50 1657
[20] Jespersen S, Metzler R and Fogedby H C 1999 Phys. Rev. E 59 2736
[21] Garbaczewski P and Olkiewicz R 2000 J. Math. Phys. 41 6843
[22] Barndorff-Nielsen O E and Shephard N 2001 J. R. Stat. Soc. B 63 167
[23] Chechkin A V et al 2002 Chem. Phys. 284 233
[24] Chechkin A V et al 2003 Phys. Rev. E 67 010102
[25] Eliazar I and Klafter J 2003 J. Stat. Phys. 111 739
[26] Eliazar I and Klafter J 2007 J. Phys. A: Math. Theor. 40 F307
[27] Magdziarz M and Weron A 2007 Phys. Rev. E 75 056702
[28] Magdziarz M 2008 Physica A 387 123
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